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VISCOUS LIQUID FLOW IN THE INITIAL PORTION 

OF A PERMEABLE CHANNEL WITH TRANSVERSE SLOT 

A. S. Lebedev and F. F. Spiridonov UDC 532.542:536.42 

The problem of flow in the initial segment of a permeable channel with trans- 
verse impermeable slot is solved. Behavior of the solution with change in geo- 
metric parameters and characteristic injection Reynolds number is analyzed. 

i. Flow in channels with permeable walls has recently attracted the ever greater atten- 
tion of researchers. This is due to the importance of its practical applications. Flow of 
this type is found, for example, in gas motion in plasmotrons with porous electrodes, liquid 
motion in wells, in intense sublimation and condensation in a number of chemical technology 
processes, etc. 

The majority of studies have considered developed flows in circular cylindrical [i-4] 
or annular [5, 6] channels. A number of investigators [7-9] have observed that distributed 
draft into the channel significantly increases the value of the critical Reynolds number for 
transition from a laminar to a turbulent flow regime, as compared to flow in a conventional 
tube. In addition it has been shown that conditions in the initial segment of the channel 
by its forward face affect the transition. 

Significantly fewer studies [10-12] have considered flows in initial sections of perme- 
able channels. In [i0] a numerical modeling of flow in the initial segment of a planar chan- 
nel was performed for initial injection Reynolds numbers in the range i0 ! Rb ! 300. Flow 
in a planar channel with permeable transverse slot located near the forward face was con- 
sidered for the same R b range in [ii]. Flow in the initial section of a planar channel with 
impermeable slot near its face was studied in [12] for the range i00 ! Rb ! i000. The pres- 
ent study will numerically model flow in the initial segment of a planar, circular, or annu- 
lar channel (Fig. i) with an impermeable transverse slot for change in slot geometric param- 
eters and injection Reynolds numbers in the range i0 ! R b 5 3000. 

The liquid is assumed incompressible with a constant dynamic viscosity coefficient. 

2. The equations defining the flow in dimensionless form are 

( ) ( ): oooo 0 1 0 ~  + ~  1 OT - - ~ ;  R b = p q b A / ~ .  

Oz yv Oz Oy yv OIl 

On t h e  i m p e r m e a b l e  b o u n d a r i e s  T = 0,  w h i l e  on t h e  p e r m e a b l e  b o u n d a r y  ~ = - R ~ ( z  - b ) .  
The v a l u e s  o f  ~ on t h e  p e r m e a b l e  (y  = R 2) and  i m p e r m e a b l e  b o u n d a r i e s  a r e  c a l c u l a t e d  d u r i n g  
s o l u t i o n  o f  t h e  p r o b l e m  u s i n g  t h e  c o n d i t i o n  o f  a b s e n c e  o f  s l i p p a g e ,  w h i l e  on t h e  r i g h t - h a n d  
b o u n d a r y  (L >> 1) t h e  v a l u e s  o f  �9 and  m a r e  c a l c u l a t e d  by e x t r a p o l a t i o n  f rom t h e  c a l c u l a t i o n  
r e g i o n  w i t h  t h e  a s s u m p t i o n  o f  a b s e n c e  o f  l o n g i t u d i n a l  d i f f u s i o n  ( f o r  d e t a i l s ,  s e e  [13 ,  1 4 ] ) .  
As l e n g t h  and v e l o c i t y  s c a l e s  i n  Eq. ( 1 )  we u s e  t h e  c h a n n e l  w i d t h  A ~ = ~ - ~ R 2 R I and draft 

o 

velocity qb" 
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Fig. 2, Change in flow structure with increase in RI: R l = 
0 (a); R I = 5 (b); R I > 7 (c). 

Fig. 3. Change in flow structure with increase in h/b: h/b = 
1 (a); 2 (b); 4 (c). 

The problem thus formulated was solved numerically by a finite difference method [13] 
using nonuniform grids (compressed toward the boundaries of the region) for the range I0 < 
Rb 5 3000 and 0 ! RI < 100. Vorticity values in the flow field were calculated with a relax- 
ation coefficient of 0.5, and on the boundaries with a coefficient of 0.i, which stabilized 
the calculation process. At the internal angular point the m values were calculated with 
consideration of the recommendations of [14]. The rate of convergence was increased by al- 
most an order of magnitude as compared to the method of [13] by organizing the relaxation 
cyclical process with Chebyshev parameters for ~. Stable, grid-size independent solutions 
were obtained on grids for 40 x 50 to 30 x 150. The criterion for convergence was maximum 
relative discrepancy of the vorticity in two successive iterations 16~I ~ 1.10 -4 . Addition- 
ally, on the boundary z = L the solution obtained was monitored for correspondence to the 
known analytical solutions [i, 5]. 

3. In performing the calculations the dependence of flow structure on the quantities 
R l, h : R~ - R~, b, and R b was studied. The channel width was maintained constant (b = i). 
Figure 2 shows the character of the change in flow structure with change in R l for R b = 2000. 
Slot height and width values for this case are h = i, b = 0.5. The calculations showed that 
the flow structure was practically independent of the value of the characteristic injection 
Reynolds number for change in the latter over the range 100 ! R b ~ 3000. Decrease in b for 
fixed h (like increase in h for fixed b) for b ~ 1 and h ~ 1 lead to practically identical 
results: the quantity of vortices near the forward face of the channel increases (for 
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Fig. 4. Recirculation zone inten- 
sity vs slot height (R b ~ i00): 
i) R b = i00; 2) i000; 3) 3000. 

R I E 7). For R I > 7 (flow approaching planar) the vortex structures are located in the chan- 
nel, with slot width and height apparently playing an insignificant role. On the whole these 
results agree fairly well with the experimental and calculated data presented in [12]. It 
is interesting that in the axisymmetric case (R l = 0) independent of whether 0Z is the axis 
of symmetry or the impermeable boundary, for the indicated R b range recirculation flow in 
the vicinity of the point 0 is not observed. In the planar case (v = 0 or R I >> i) in the 
vicinity of the point 0 there is a recirculation flow, the dimensions of which at h = 0 and 
b = 0 are defined by a dependence on R b close to that presented in [i0]. 

Development of the flow structure in the range i00 ! Rb E 3000 for R I = 0 with increase 
in the ratio h/b is shown in Fig. 3. The data presented indicate that the quantity of re- 
circulating zones in the slot increases with increase in the ratio h/b. The dependence of 
the number of such zones on h/b is close to linear. 

It is of interest to find the dependence of the intensity Q of the circulation zones 
on the coordinate n = (Y - R2)/(R3 - R2), measured along the slot. By the intensity Q we 
understand the mean integral over the volume of an individual vortex of its rotation velo- 
city. This dependence, obtained by processing the calculated data and valid for R b > I00, 
is shown in Fig. 4, whence it is evident that circulation zone intensity falls off very 
rapidly with slot height. With accuracy sufficient for practical use this dependence can 
be approximated by the expression n = -0.i in Q. 

NOTATION 

Z, y, rectangular (cylindrical) coordinates; Rz, R2, R3, characteristic radii of chan- 
nel and slot; A, channel width; b, h, slot width and height; L, channel length; Rb, charac- 

o 

teristic injection Reynolds number; qb' draft velocity into channel; 0 ~ D~ liquid density 
and viscosity; ~ degree (denotes dimensional quantity); m, ~, vorticity, flow function; 
v, subscript (~ = 0, i is planar or axisymmetric flows); 6~, maximum relative discrepancy 
of vorticity for two subsequent iterations; D = (Y - R2)/(R3 - R2) coordinate measured along 
slot; Q, recirculation zone intensity. 
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CALCULATION OF NOZZLE FLOW WITH MIXING IN THE PRESENCE 

OF A STRONG VORTICITY EFFECT 

V. I. Vasil'ev UDC 532.522.2:519.633 

A method of calculating the essentially three-dimensional turbulent flow in a 
mixing channel is proposed. The results of calculating the nozzle flow behind 
a mixer is presented. 

I. In mixing nozzles, mixers generally of the tab type, are used to intensify the mix- 
ing process. The distribution of the parameters behind a mixer at the nozzle inlet is cir- 
cumferentially nonuniform, and the flow is essentially three-dimensional. Experiments [i] 
have also shown that the flow over a curved mixer surface may create intense longitudinal 
vortices, under whose influence one of the streams separates into a number of jets. 

The calculation of nozzle flows behind mixers was the subject of studies [2, 3]. In 
[2] the Patankar-Spalding method [4], intended for the numerical integration of the parabo- 
lized Navier-Stokes equations, was employed. The calculations were compared with the ex- 
perimental data, but the lack of information on the cross flow fields at the mixer exit face 
made it impossible to obtain good agreement. In [3] the experimental data of [I] were used 
as the conditions at the mixer exit and the results of the calculations were found to be in 
satisfactory qualitative and quantitative agreement with experiment. These calculations made 
use of a method [5] originally developed for investigating flows in curved channels. The 
parameter distributions were found by numerical integration of the equations written in a 
coordinate system moving with the inviscid gas streamlines in a nozzle of the same geometry 
but without mixing. The pressure distribution was represented as the sum of the pressure 
fields in the inviscid gas flow and a correction for mixing. In this case the calculations 
are more complicated than when the method adopted in [2] is employed. 

Our aim was to show that when the true nature of the cross flows at the mixer exit is 
taken into account, the parabolized Navier-Stokes equations make it possible to describe the 
mixing process in the nozzle. The cross flows are calculated using the approach propose~ 
in [6], extended to the case of compressible gas flows. For describing the cross flows due 
to vorticity it is also proposed to employ simplified relations that are exact in the limit- 
ing case - the mixing of flows with only slightly different parameters. 

2. The parabolized Navier-Stokes equations describe weakly expanding flows, i.e., flows 
in which the parameters in a preferred direction vary much more weakly than in the transverse 
section. For subsonic perfect gas flows with constant specific heats in the cylindrical co- 
ordinate system in which x is the axial coordinate in the preferred direction these equations 
take the form: 

OPU2 @ div (pVu) = - -  d...P_P _]_ div (pvtvu) ,  ( 1 ) 
c)x dx 

~pu___._~V q._ div(pgv) Op q. 1_ .00_ (y,yy) q_ 1 OTyo *oo , (2 )  
Ox Oy y Oy y O0 y 
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